Modification of the Interface Nanostructure and Magnetic Properties in Nd-Fe-B Thin Films

نویسندگان

  • Kunihiro Koike
  • Takanao Kusano
  • Daisuke Ogawa
  • Keisuke Kobayashi
  • Hiroaki Kato
  • Mikihiko Oogane
  • Takamichi Miyazaki
  • Yasuo Ando
  • Masaru Itakura
چکیده

The effects of Nd2Fe14B grain size and Nd coating on the coercivity in sputter-deposited Nd-Fe-B/Nd thin films have been investigated in order to gain an insight into the coercivity mechanism of Nd-Fe-B magnets. Highly textured Nd2Fe14B particles were grown successfully on the MgO(100) single-crystal substrate with the Mo underlayer. As the Nd-Fe-B layer thickness t NFB was decreased from 70 to 5 nm, the coercivity H c increased gradually from 6.5 to 16 kOe. By depositing the Nd overlayer onto these films and post-annealing at 500 °C, the H c value further increased from 17.5 kOe (t NFB=70 nm) to 26.2 kOe (t NFB=5 nm). The amount of H c increase by the combination of the Nd coating and post-annealing was about 10 kOe irrespective of the t NFB value. These results therefore suggest an independence of size and interface effects on the coercivity of Nd-Fe-B magnets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cobalt Concentration on Structural and Magnetic Properties of Co-Fe Thin Films

Co-Fe films were electrodeposited on Cu substrate from electrolytes with different Co concentration  levels. X-ray diffraction (XRD) was used  to  investigate  the  films  crystal  structures. The  results  indicate that  if  the  Co  concentration  is  less  that  the  Fe  concentration,  the cubic  structure  appears  in  the  films, while  the  hexagonal  structure dominates when  the C...

متن کامل

Growth, Characterization of Cu Nanoparticles Thin Film by Nd: YAG Laser Pulses Deposition

We report the growth and characterization of Cu nanoparticles thin film of on glass substrate by pulse laser deposition method. The Cu thin film prepared with different energy 50, 60, 70, and 80 mJ. The energy effect on the morphological, structural and optical properties were studied by AFM, XRD and UV-Visible spectrophotometer. Surface topography studied by atomic force microscopy revealed na...

متن کامل

توسعه لایه‌های نازک پر انرژی بر پایه مغناطیس‌های نادر خاکی تبادلی ارتجاعی با ترکیب NdFeB/FeCo

In this study, nine Nd-Fe-B and FeCe thin films with 10-50 nanometers width were prepared by RF magnetron sputtering on the Si/SiO2 substrate. Then, the films were annealed at 800 oC for 5 sec in rapid thermal annealing furnace. X-ray diffractometry (XRD) was used to analyze the phase composition of layers and existance of Nd2F14 and Fe65Co35 phase was confirmed, without formation of any o...

متن کامل

Effect of Magnetic Field on Surface Morphology and Magnetic Properties of FeCu/Cu Nano layers Prepared by Electrodeposition Technique: Investigation of Magneto-hydrodynamic Effect

In this paper, the effect of magnetic field on the morphology, structure and magnetic properties of electrodeposited FeCu/Cu thin films was investigated. The films were deposited on Au2PdAg/glass substrates using electrodeposition technique in potentiostatic control. The magnetic fields of 5000 and 7000 Oe were applied on deposition bath during deposition. Two series of thin films were prepared...

متن کامل

Dependence of Nanostructure and the Optical Properties of Ni Thin Films with Different Thicknesses on the Substrate Temperature

Nickel films with the thicknesses of 30 and 120 nm were deposited on glass substrates, at different substrate temperatures (313 to 600 K) under uhv condition. The nano-structure of the films and mean diameter of grains was obtained for each films using atomic force microscopy (AFM). Their optical properties were measured by spectrophotometry in the spectral range of 190-2500 nm. Kramers-Kronig ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016